\(\int \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx\) [72]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 36, antiderivative size = 123 \[ \int \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {\sqrt {a} (i A+2 B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {\sqrt {2} \sqrt {a} (i A+B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}-\frac {A \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{d} \]

[Out]

-(I*A+2*B)*arctanh((a+I*a*tan(d*x+c))^(1/2)/a^(1/2))*a^(1/2)/d+(I*A+B)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^
(1/2)/a^(1/2))*2^(1/2)*a^(1/2)/d-A*cot(d*x+c)*(a+I*a*tan(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3679, 3681, 3561, 212, 3680, 65, 214} \[ \int \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {\sqrt {a} (2 B+i A) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {\sqrt {2} \sqrt {a} (B+i A) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}-\frac {A \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{d} \]

[In]

Int[Cot[c + d*x]^2*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

-((Sqrt[a]*(I*A + 2*B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/d) + (Sqrt[2]*Sqrt[a]*(I*A + B)*ArcTanh[Sq
rt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/d - (A*Cot[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/d

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3561

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 3679

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*
(n + 1)*(c^2 + d^2))), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3681

Int[(((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(A*b + a*B)/(b*c + a*d), Int[(a + b*Tan[e + f*x])^m, x], x] - Dist[(B*c
 - A*d)/(b*c + a*d), Int[(a + b*Tan[e + f*x])^m*((a - b*Tan[e + f*x])/(c + d*Tan[e + f*x])), x], x] /; FreeQ[{
a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {A \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}+\frac {\int \cot (c+d x) \sqrt {a+i a \tan (c+d x)} \left (\frac {1}{2} a (i A+2 B)-\frac {1}{2} a A \tan (c+d x)\right ) \, dx}{a} \\ & = -\frac {A \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}+(-A+i B) \int \sqrt {a+i a \tan (c+d x)} \, dx+\frac {(i A+2 B) \int \cot (c+d x) (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)} \, dx}{2 a} \\ & = -\frac {A \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}+\frac {(2 a (i A+B)) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{d}+\frac {(a (i A+2 B)) \text {Subst}\left (\int \frac {1}{x \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{2 d} \\ & = \frac {\sqrt {2} \sqrt {a} (i A+B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}-\frac {A \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{d}+\frac {(A-2 i B) \text {Subst}\left (\int \frac {1}{i-\frac {i x^2}{a}} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{d} \\ & = -\frac {\sqrt {a} (i A+2 B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {\sqrt {2} \sqrt {a} (i A+B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}-\frac {A \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.06 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.96 \[ \int \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {-i \sqrt {a} (A-2 i B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {a}}\right )+\sqrt {2} \sqrt {a} (i A+B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )-A \cot (c+d x) \sqrt {a+i a \tan (c+d x)}}{d} \]

[In]

Integrate[Cot[c + d*x]^2*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

((-I)*Sqrt[a]*(A - (2*I)*B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]] + Sqrt[2]*Sqrt[a]*(I*A + B)*ArcTanh[Sq
rt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])] - A*Cot[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/d

Maple [A] (verified)

Time = 0.29 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.93

method result size
derivativedivides \(\frac {2 i a^{2} \left (-\frac {\left (i B -A \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{2 a^{\frac {3}{2}}}+\frac {\frac {i A \sqrt {a +i a \tan \left (d x +c \right )}}{2 a \tan \left (d x +c \right )}-\frac {\left (-2 i B +A \right ) \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}}{\sqrt {a}}\right )}{2 \sqrt {a}}}{a}\right )}{d}\) \(114\)
default \(\frac {2 i a^{2} \left (-\frac {\left (i B -A \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{2 a^{\frac {3}{2}}}+\frac {\frac {i A \sqrt {a +i a \tan \left (d x +c \right )}}{2 a \tan \left (d x +c \right )}-\frac {\left (-2 i B +A \right ) \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}}{\sqrt {a}}\right )}{2 \sqrt {a}}}{a}\right )}{d}\) \(114\)

[In]

int(cot(d*x+c)^2*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

2*I/d*a^2*(-1/2*(-A+I*B)/a^(3/2)*2^(1/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))+1/a*(1/2*I*A*(a
+I*a*tan(d*x+c))^(1/2)/a/tan(d*x+c)-1/2*(A-2*I*B)/a^(1/2)*arctanh((a+I*a*tan(d*x+c))^(1/2)/a^(1/2))))

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 649 vs. \(2 (95) = 190\).

Time = 0.27 (sec) , antiderivative size = 649, normalized size of antiderivative = 5.28 \[ \int \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {2 \, \sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (A^{2} - 2 i \, A B - B^{2}\right )} a}{d^{2}}} \log \left (-\frac {4 \, {\left ({\left (-i \, A - B\right )} a e^{\left (i \, d x + i \, c\right )} + {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {{\left (A^{2} - 2 i \, A B - B^{2}\right )} a}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - 2 \, \sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (A^{2} - 2 i \, A B - B^{2}\right )} a}{d^{2}}} \log \left (-\frac {4 \, {\left ({\left (-i \, A - B\right )} a e^{\left (i \, d x + i \, c\right )} - {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {{\left (A^{2} - 2 i \, A B - B^{2}\right )} a}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (A^{2} - 4 i \, A B - 4 \, B^{2}\right )} a}{d^{2}}} \log \left (-\frac {16 \, {\left (3 \, {\left (-i \, A - 2 \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (-i \, A - 2 \, B\right )} a^{2} + 2 \, \sqrt {2} {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {{\left (A^{2} - 4 i \, A B - 4 \, B^{2}\right )} a}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{i \, A + 2 \, B}\right ) + {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {-\frac {{\left (A^{2} - 4 i \, A B - 4 \, B^{2}\right )} a}{d^{2}}} \log \left (-\frac {16 \, {\left (3 \, {\left (-i \, A - 2 \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (-i \, A - 2 \, B\right )} a^{2} - 2 \, \sqrt {2} {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {{\left (A^{2} - 4 i \, A B - 4 \, B^{2}\right )} a}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{i \, A + 2 \, B}\right ) + 4 \, \sqrt {2} {\left (i \, A e^{\left (3 i \, d x + 3 i \, c\right )} + i \, A e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{4 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \]

[In]

integrate(cot(d*x+c)^2*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/4*(2*sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-(A^2 - 2*I*A*B - B^2)*a/d^2)*log(-4*((-I*A - B)*a*e^(I*d*x +
 I*c) + (d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-(A^2 - 2*I*A*B - B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-
I*d*x - I*c)/(I*A + B)) - 2*sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-(A^2 - 2*I*A*B - B^2)*a/d^2)*log(-4*((-I
*A - B)*a*e^(I*d*x + I*c) - (d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-(A^2 - 2*I*A*B - B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x
+ 2*I*c) + 1)))*e^(-I*d*x - I*c)/(I*A + B)) - (d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-(A^2 - 4*I*A*B - 4*B^2)*a/d^2)
*log(-16*(3*(-I*A - 2*B)*a^2*e^(2*I*d*x + 2*I*c) + (-I*A - 2*B)*a^2 + 2*sqrt(2)*(a*d*e^(3*I*d*x + 3*I*c) + a*d
*e^(I*d*x + I*c))*sqrt(-(A^2 - 4*I*A*B - 4*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)
/(I*A + 2*B)) + (d*e^(2*I*d*x + 2*I*c) - d)*sqrt(-(A^2 - 4*I*A*B - 4*B^2)*a/d^2)*log(-16*(3*(-I*A - 2*B)*a^2*e
^(2*I*d*x + 2*I*c) + (-I*A - 2*B)*a^2 - 2*sqrt(2)*(a*d*e^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c))*sqrt(-(A^2 -
 4*I*A*B - 4*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/(I*A + 2*B)) + 4*sqrt(2)*(I*A
*e^(3*I*d*x + 3*I*c) + I*A*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))/(d*e^(2*I*d*x + 2*I*c) - d)

Sympy [F]

\[ \int \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \left (A + B \tan {\left (c + d x \right )}\right ) \cot ^{2}{\left (c + d x \right )}\, dx \]

[In]

integrate(cot(d*x+c)**2*(a+I*a*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))*(A + B*tan(c + d*x))*cot(c + d*x)**2, x)

Maxima [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.18 \[ \int \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {i \, {\left (\frac {\sqrt {2} {\left (A - i \, B\right )} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right )}{\sqrt {a}} - \frac {{\left (A - 2 i \, B\right )} \log \left (\frac {\sqrt {i \, a \tan \left (d x + c\right ) + a} - \sqrt {a}}{\sqrt {i \, a \tan \left (d x + c\right ) + a} + \sqrt {a}}\right )}{\sqrt {a}} - \frac {2 i \, \sqrt {i \, a \tan \left (d x + c\right ) + a} A}{a \tan \left (d x + c\right )}\right )} a}{2 \, d} \]

[In]

integrate(cot(d*x+c)^2*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/2*I*(sqrt(2)*(A - I*B)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(
d*x + c) + a)))/sqrt(a) - (A - 2*I*B)*log((sqrt(I*a*tan(d*x + c) + a) - sqrt(a))/(sqrt(I*a*tan(d*x + c) + a) +
 sqrt(a)))/sqrt(a) - 2*I*sqrt(I*a*tan(d*x + c) + a)*A/(a*tan(d*x + c)))*a/d

Giac [F]

\[ \int \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {i \, a \tan \left (d x + c\right ) + a} \cot \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(cot(d*x+c)^2*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)*cot(d*x + c)^2, x)

Mupad [B] (verification not implemented)

Time = 8.36 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.37 \[ \int \cot ^2(c+d x) \sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {\mathrm {cot}\left (c+d\,x\right )\,\left (A\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}+A\,\sqrt {a}\,\mathrm {tan}\left (c+d\,x\right )\,\mathrm {atanh}\left (\frac {\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{\sqrt {a}}\right )\,1{}\mathrm {i}+2\,B\,\sqrt {a}\,\mathrm {tan}\left (c+d\,x\right )\,\mathrm {atanh}\left (\frac {\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{\sqrt {a}}\right )-\sqrt {2}\,A\,\sqrt {a}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {a}}\right )\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}-\sqrt {2}\,B\,\sqrt {a}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {a}}\right )\,\mathrm {tan}\left (c+d\,x\right )\right )}{d} \]

[In]

int(cot(c + d*x)^2*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

-(cot(c + d*x)*(A*(a + a*tan(c + d*x)*1i)^(1/2) + A*a^(1/2)*tan(c + d*x)*atanh((a + a*tan(c + d*x)*1i)^(1/2)/a
^(1/2))*1i + 2*B*a^(1/2)*tan(c + d*x)*atanh((a + a*tan(c + d*x)*1i)^(1/2)/a^(1/2)) - 2^(1/2)*A*a^(1/2)*atanh((
2^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*a^(1/2)))*tan(c + d*x)*1i - 2^(1/2)*B*a^(1/2)*atanh((2^(1/2)*(a + a*
tan(c + d*x)*1i)^(1/2))/(2*a^(1/2)))*tan(c + d*x)))/d